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ABSTRACT 

We present a thorough analysis of U(1) generators in all of the nine 

possible symmetry breaking patterns that reduce SU(7) down to SUc(3) x SU(?) 

x U(1). There is one allowed representation that contains three generations 

of leptons and at ,least two generations of quarks, and satisfy anomaly 

freedom, reality under SUc(3) and Uem(l), and complexity under SUc(3) x SlJ(2) 

x U(1). In addition, three other representations, two having only one and 

two of the three lepton-quark generations complex with respect to SUc(3) 

x sup) x U(l), and the other having fractionally charged color singlets 

in pair embedded in the fundamental representation [7], are also analyzed 

for completeness. 

t Permanent address 
* 

Supported in part by the U. S. Department of Energy under Contract 
DE-ACOZ-76ER03130.AO07 - Task A. 

** 
Senior Fulbright Fellow 

0pwat.d by Unlr~nltler Research A8rociatlon Inc. under contract with the Wilted States Dapaltment Ot Energy 



I. INTRODUCTION 

Recently there has been considerable interest in grand unified scheme 

based on SU(7) .lP2 This is partly motivated by the persistently elusive 

nature of t-quark in experiments= and partly by the possibility that the re- 

cent observation4 of fractional charge + (l/3)= might be the evidence of 

fractionally charged color singlet particles.5 Also one may need to require 

additional intermediate natural mass scale as it has been discussed in con- 

nection with the possible neutrino oscillations. 6 

In this paper, we consider all classes of SU(7) which are anomaly-free 

and complex7 with respect to SUc(3) x SU(2) x U(1) and yet allowing three 

generations of leptons and at least two generations of quarks. We restrict 

ourselves to those representations containing color 1, 3 and 3* only’ but 

allow repetitions of the same irreducible representation as long as the com- 

bination does not involve any common factors in the coefficients.’ Also, we 

require the representation to be real under SUc(3) and Uem(l). Complex re- 

presentations lo can be found in gauge groups SU(N), SO(4N + 21, and E 
6’ 

Among 

these, SO(4N + 2) and E6 are anomaly free. Spinor representation of 

SO(4N + 2) = DZN + 1 with dimensionally of ZzN is complex. But the charge 

assignment in the spinorial representation of SU(2N + 1) = AzN, i.e., the 

anomaly-free combination which becomes the spinor representation of DzN + 1 

into which AzN can be naturally embedded, encompasses the charge assignment 

Of %N + 1’ On the other hand, the fundamental representation [27] of E6 

is complex and contains no color exotics. 11 But it can not accommodate more 

than two generations of quark and lepton. Thus we prefer to use the anomaly- 

free combination of totally antisymmetric AzN representations, 
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Despite the simplicity, the minimal SU(5) model 12 suffers from the 

inability of accommodating more than one quark-lepton generation in the spinor 

representation. SU(6) is no improvement over SU(5) as, for example, the 

anomaly-free combination 2 [6] * + [15] can entertain only one generation as in 

SU(5). One may hope to use a single irreducible representation. Indeed the 

13 anomaly-free and complex irreducible representation occurs in SU(6) but 

with dimension D = 374,556 corresponding to the highest weight (0,5,0,0,4) 

in the Dynkin basis. The next lowest dimensional representation which is 

complex and anomaly-free is in SU(5) with D = 1,357,824 or (0,7,3,3). 

Thorough search 14 has been carried out for the range of dimension up to 

D = 4 x log for SU(N) where N is less than 17. There are 28 anomaly-free 

complex representations. Such representations are only of mathematical 

curiosity and do not have any practical use due to awesome dimensionality. 

In addition, they usually contain color exotics. Even then, closer examina- 

tions reveal that the representation (0,5,0,0,4) can accommodate only one 

generation of quarks and leptons, but with many exotic particles. So we go 

to the next simplest case, i.e., the complex and anomaly-free combination 

of the irreducible representations in SU(7) = A6. 

The problem of flavor unification has been discussed before but with 

the requirement of the three generations usually. Such scheme assumes that 

the third quark doublet will be eventually discovered, a fact at the moment 

far from the reality. It may be that the t-quark is not what we have sought 

after and has totally unexpected properties and mass value. In fact, certain 

theoretical arguments based on the evolution of the coupling constants via 
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renormalization equations tend to imply either the t quark is as heavy as 

240 GeV or it is accompanied by still another 4th quark doublet. In short, 

there is no persuasive reasoning to insist on the doublet of (t,b) even 

theoretically. Thus we choose to require the SU(7) representation to accommo- 

date three doublets of leptons and at least two doublets of quark with the 

hypercharges as given in the standard flavor gauge model. 

In this paper, we give special emphasis on the various possible pat- 

terns of symmetry-breaking, all of which will eventually reduce SU(7) down 

to SUc(3) x SU(2) x U(1). But there are actually three U(1) generators and 

a different symmetry-breaking mode will need different combinations of the 

three U(1) diagonal generators for the hypercharge. Tracking down those Uil) 

generators and their eigenvalues is by no means a trivial task. The method 

we use here is to utilize the projection operators. It turns out that there 

are nine non-trivial routes to break SU(7) into SUc(3) x SU(2) x U(1) includ- 

ing the one going through SU(5) at the intermediate stage. We give a complete 

analysis of U(1) generators in all of these cases and give the structure of 

corresponding charge and hypercharge generators. 15 Such thorough U(1) analysis 

has, as far as we know, never been made before. The projection operator method 

is not only very economical but also enormously powerful and it can easily be 

extended to any group. In this paper, we take the case of spinor representation 

to apply the projection operator method explicitly. For other representations 

we will give the final results only, which can be obtained similarly. 

Another non-trivial result of this paper is that there is exactly one 

complex and anomaly-free representation with D Z 110 of SU(7) that satisfies 
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the required number of quarks and leptons. That is: [Zl] + [35*] + [7*]. 

‘But it will be shown that the charge generators for this representation 

discussed in the literature1 are corresponding to some particular modes of 

symmetry-breaking out of the possible nine. Without complete control of 

the U(1) eigenvalues, it will be impossible to see how general they are. 

In addition, we present in this paper the U(1) analysis of the re- 

presentations [21] + [35] + 5[7*] and 2[25] + [Zl*] + [7*] as well as of 

the spinor representation but with fractionally-charged color singlets 

embedded in pair. The former can have only two and one respectively out 

of three generations of quarks and leptons complex. But in view of the 

smallness of hhe electron and muon mass compared to that of tau, such - 

models may have some potential use. The spinor representation with fraction- 

ally-charged color singlets in pair can embrace only two generations of 

leptons and quarks. Our complete U(1) analysis reveals again that the SU(7) 

model of this latter type as discussed by others’ corresponds to only one 

particular symmetry-breaking. 

We give a simple formula for sin 28 w at the grand unification mass and 

point out that different symmetry-breaking patterns will contribute differently 

to the renormalization corrections. Finally, we compare the characteristic 

differences of the fermion content in different types of representations. 

The paper is organized as follows: In Section II, we define a set of 

guielines that must be satisfied by the model and by the allowed representa- 

tions of SU(7). Section III contains the nine possible symmetry-breaking 

patterns that make SU(7) + SUc(3) x SU(2) x U(1). In particular, the inter- 
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mediate breaking stage may not necessarily go through SU(5). In Section IV, 

we give the projection operators for the nine modes of symmetry-breaking 

and show how they oan be used, in particular, to obtain U(1) eigenvalues to 

construct the hypercharge generators. The most general charge assignment 

in SU(7) turns out to be rather restricted: there is only one charge assign- 

ment possible when the irreducible representation is allowed to repeat. In 

this case, two SU(5) singlets in the fundamental representation [7] of SU(7) 

are electrically neutral. But with charged particle embedding to the SU(5) 

singlets, the spinor representation is the only one allowed whether or not 

these singlets have fractional charges. Finally in Section V, the differ- 

ence of the fermion content between the different SU(7) representations is. 

briefly sketched. 

II. SU(7) REPRESENTATIONS 

We impose the following guidelines for SU(7). 

(1) 

(2) 

(3) 

(4) 

The representation should be anomaly free, lb,17 for 

the renormalizability. 

The representation of left-handed fermions should be 

real with respect to SUc(3). 

The representation should contain lc, 3c, and 3c* only 

of su$3).* 

The representation should be complex' with respect to 

SUc(3) x SU(2) x U(1). 

~:. 
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(5) The representation should accommodate at least two 

generations of quarks and all three generations of 

leptons. 

In the case of SU(S), the first two conditions are equivalent but 

in general they are not. The representation of the charged fermions is 

real with respect to Uem(l) in any case, as there are no known massless 

and charged fermions in nature. We do not require the overall asymptotic 

freedom but it turns out this conditionIfs satisfied automatically in our 

case. Nor do we insist on having all three generations of quarks. This 

will imply that the lepton-quark symmetry holds for the first two genera- 

tions only. 

SU(7) models can be classified depending on whether or not the same 

irreducible representation is repeated in the anomaly-free combinations: 

Type I. No irreducible representations appear more than once. 

Type II. The same irreducible representation can be repeated in 

such a way that no common coefficients are to exist in 

the anomaly-free combinations. 

We considered all the possible anomaly-free combinations having 

D = 42 -. 110. Of all possible combinations, there is exactly one representa- 

tion that satisfies the five conditions listed above, That is: 

fL = [21] + [35*] + [7*] (1) 

If we relax conditions and require at least two of the three quark- 

lepton generations to be complex with respect to SUc(3) x SU(2) x U(l), then 

we obtain the representation, 



fb = [21] + [35] + 5[7*] (2) 

If we relax conditions further to allow at least one of the three 

quark-lepton generations to be complex with respect to SUc(3) x SU(2) x U(l), 

then the representation 

fL = 2[35] + [21*] + [7*] (3) 

is also possible. In representation (3), the first generation would have 

considerably smaller mass than the other two generations. Inview of the 

smallness of the electron mass compared to those of muon and tau,~ some may 

like to entertain such a scenario. For this reason, we will give the hyper- 

charge operators corresponding to this case along with the other two cases. 

Generally there is only one anomaly-free and complex representation 

of Type I in SU(~2N + l), and that is constructed out of 2 2N spinorial repre- 

sentation of SO(4N + 2). 

III. S’jMMETRY-BREAKING PATTERNS 

Although there is still a great deal of freedom in defining the hyper- 

charge operators with the constraints imposed above, the structure of hyper- 

charge operators falls into one of the following nine categories of symmetry- 

breaking pattern, all of which reduce SU(7) to SUc(3) x SU(2) x U(l). 

Case (A): 

followed by 

SU(7) + SU(2) x su EWS(5) x us(l) 

SU(2) + Ub(l) 

(4) 
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and 

SU EwS(5) + SU(2) x SUc(3) x UC(l) . 

This case takes W(5) as an intermediate step from which SUc(3) x SU(2) 

comes. The symmetry breakings into Ub(l) and U'(1) do not necessarily 

occur at the same stage. But the charge operator is independent of the 

order in the second stage of symmetry breakings. In general, there are 

three U(1) generators. 

Case (B): 

followed by 

SU(7) + W(2) x SUs(5) x ?(l) 

and then 

SUs(5) + SU(2) x SUc(3) x UC(l) 

W(2) + Ub(l) . 

Note that weak SU(2) emerges at the first stage of symmetry-breaking and 

remains that way. 

Case (C): 

SU(7) -+ SU(2) x SUs(5) x uaw (6) 

and 

SUs(5) + SUs(4) x ubw 

+ SUc(3) x UC(l) x Ub(l) 

(5) 

The first stage of symmetry-breaking is the same as in Case (B), but is 

followed by 

SUs(5) -f SUs(4) -t SUc(3) 
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successively. 

.Case (D) : 

SU(7) + SUEW(3) x SUs(4) x us(l) (7) 

followed by 

SUEW(3) + SU(2) x Ub(l) 

and 

SUs(4) -f SUc(3) x UC(l) 

We note that the symmetry-breaking mode SUEw(3) + SU(2) is also possible, 

I.e., without Ub(l) contributions. But since we need only doublets and singlets 

of weak SU(2), this symmetry-breaking is excluded. This can be seen by observ- 

ing that the projection operator for A2 -+ A1 is given by 

PfA2 + Al x uq = [; ;] (9) 

so that no doublets can occur. However, 

1 1 I=[ 1 1 -1 

which corresponds to Case (D) is allowed. Note that A2 -f A1 can take two 

different projections. 

Case (E) : 

followed by 

SU(7) -t SUc(3) x SUEW(4) x us(l) 

SU&4) -f SUEW(3) x Ub(l) 

-f SU(2) x UC(l) x Ub(1) 

(10) 
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Note that the color SUc(3) appears from the first stage 

Mathematically, the symmetry-breaking pattern 

followed by either 

SUE#(4) + SP(4) x ubm 

or directly 

Sp(4) -t SU(2) A W(2) + SU(2) x UC(l) 

Sp(4) + SU(2) x UC(l) 

is also possible. In these cases, the eigenvalue of Ub(l), Yb, is zero neces- 

sarily and this makes too restrictive to allow the right combination for charge 

operators. In addition, Sp(4) -t SU(2) x U(1) contains higher multiplets for 

weak SU(2) than just singlets and doublets. 

Case (F) : 

followed by 

SU(7) + SUc(3) x SUEW(4) x ?(l) 

SUEW(4) + SU(2) x SU(2) x Ub(1) -+ SU(2) x Ub(1) x UC(l) 

This case 19 is distinguished from Case (E) in that the second stage is 

(12) 

SUEW(4) -+ SU(2) x SU(2) x Ub(1) 

followed by any one of the two SU(2)‘s going into U’(1). The symmetry-breaking 

pattern suggested by Cox, Frampton, and Yildiz’ for generating the fermion masses 

is in fact of this type. 

The pattern of SUEw(4) + SU(2) X SU(2) without Ub(l) is ruled out, as the 

final weak SU(2) contains triplets necessarily in addition to singlets and 
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doublets." Note that A3 + A x A 11 can take two different projections also. 

Case (G) : 

followed by 

SU(7) -+ su Ews(6) x us(l) (13) 

S’JEws (6) + SUEWS(5) x ubm 

and 

SUEWS (5) + SU(2) x SUc(3) x UC(l) 

The first and second stages of symmetry-breaking go through SU(6) and SU(5). 

But Us(l) and Ub(l) may play a significant role to give the correct charge 

generators. 

Case (H): 

followed by 

SU(7) + su EWS C6) x us(l) (14) 

and 

SUEws(6) -+ SU(2) x SUs(4) x Ub(l) 

SUs(4) + SUc(3) x UC(l) . 

This case has different symmetry-breaking in the second stage from Case (G). 

case (I): 

followed by 

and 

SU(7) -t su Ews(6) x ‘Ja(l) 

S’JEWS (6) + SU(3) x SUc(3) x Ub(1) 

SU(3) + SU(2) x UC(l) . 

(15) 
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Mathematically, SU(6) can branch into SU(2) x SU(3), SU(4), SU(3) and 

Sp(6) also, but these modes can be shown to fail to give the correct charge 

generator. 

These exhaust all symmetry-breaking patterns 20 
which are non-trivial 

and more importantly relevant to the physics of SU(7) model. Different 

symmetry-breaking patterns give rise to different physics in detail. Firstly, 

they entail different combinations of U(1) generators to appear in the charge 

operator, and secondly, they provide a different evolution of sin2aW from its 

value at the grand unification mass to low energies, We make thorough investiga- 

tion of the Uql) generators in each and every case of the symmetry-breaking 

patterns in the next section. We will introduce projection operators 21 in 

order to obtain the U(l) eigenvalues and their contribution to the hypercharge 

operator. We show the potential powerfulness of the projection method which 

can be used to any Lie group. 

IV. PROJECTION OPERATORS AND HYPERCHARGE GENERATORS 

The projection operators for the nine symmetry-breaking patterns are 

given in Table I. Here the first and second rows project A6 into A2 and the 

third row projects A6 into Al. The remaining three rows represent the three 

successive Us(l), Ub(l), and U’(l) projections. 

The charge operator is a generator of SU(7) and is given by 

Q = T3 + a? + bYb + CY ’ , (16) 

where T3 is the third generator of SU(2) and Ya, Yb, Yc are the diagonal 
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operators corresponding to the respective U(1) rotations. 

Different symmetry-breaking patterns give rise to the different com- 

binations of Y in the hypercharge operator. Here we will work out explicitly 

for the hypercharge in the Case (D), and simply give the final results for 

the other cases which can be obtained similarly. The projection operator of 

Case (D) carries the representations [7], [21], [35] into SUc(3) x SU(2) x Us(l) 

x U’(1) as in Table II. As expected, [7] decomposes into (3,l) + (1,2) + 2(1,1) 

in (SUc(3), SU(2)) multiplets. 

Thus, the most general charge assignment is 

Q = diag(q,q,q,a,a-l,b,l-3q-2a-b). (1.7) 

If we identify the charge of (3.1) to be -l/3 and those of (1,2) as 

(l,O), then 

Q = diag(-l/3, -l/3, -l/3, l,O,q,-q) . (18) 

Using the charges of the five components of [7], (3,l) and (1,2), as input, 

one can determine the contribution of each U(1) to Q from Eq. (16) and Table IIA. 

One can easily verify that there are actually two solutions for Case (D): 

either 

a = -l/6, b = -l/6, c = l/6, (19) 

or 

a = 0, b = l/2, c = - l/3 . (20) 

Having determined U(1) contributions to Q, we can then obtain the charges of 

the sixth and seventh elements, i.e., q = -1 for Eq. (20) and q = +l for 

Eq. (19)) as well as those of [21] and [35]. The hypercharges of [21] and [35] 
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given in Table IIB and IIC are corresponding to Eq. (20), but it is obvious 

that the combination (19) would amount only to the interchange of 6 fi 7 in 

* a' *,e and *aBy. On the other hand, the two different U(1) combinations can 

result in different evolutions of the coupling constants from the renormaliza- 

tion group equations. And in particular Us(l) contributions to the evolution 

of sin2aW will be different depending on whether or not a = 0. Also different 

monopoles may be produced for the two different solutions, Eqs. (19) and (20). 

However, it is not clear if estimate of the monopole contributions 22 to 

the energy density of the universe is reliable enough to prefer one solution 

to the other. 

In any case, one may say that from the five conditions imposed, only 

allowed solutions are q = +l for Eq. (l), i.e., for Type I representation. 

However, it turns out that for Type II representations q = 0 is the only one 

allowed. This is because, for example, Eq. (2) contains many more, presumably 

heavy, particles which are SU(5) real besides those in 

4(5*,1) + (10,2) + (5 ,2) + 5(1,2) +(l,l) 

of (SU(S), SU(2)) decomposition. In this case, the charge assignment is de- 

cided by the content of the light particles in the mixed combinations of 

SU(5) x SU(2). This is to be contrasted with Type I representation for which 

the fundamental representation dictates the charge assignment. 

We summarize in Table III the contributions of the various U(1) 

generators for the Type I (Eq. (1)) and for the Type II (Eqs. (2) and (3)). 

Then the charge operator can readily be read off from Table III and Eq. (16). 

We note that the SU(7) model constructed by Kim' has the hypercharge generator 
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corresponding to the second solutions in Case (D) and Case (C) for Type I, 

and the SU(7) model constructed by Cox, Frampton, and Yildiz’ corresponds 

to Case (A) for Type II. 

The anomaly-free combination of Eq. (3) contains at least one of 

three generations that is complex with respect to SUc(3) x SU(2) x U(1). 

As mentioned above, this representation may be of some interest. The 

charge operator in each mode of symmetry-breaking is precisely the same as 

that of Eq. (2)) which may be due to the fact that the charge assignment of 

the fundamental representation [7] is identical to that in Eq.‘(2), i.e., 

q = 0 in Eq. (18). This does not, however, mean the same content of fermions. 

For example, in Eq. (2) while there can be no light t quark from the usual~ 

wisdom of survival hypothesis I (i.e., real with respect to SU(S)), b quark 

is real with respect to SUc(~3) x SU(2) x U(1). However, in the representa- 

tion (3)) a doublet of (t,b) can exist but its representation is real with 

respect to SUc(3) x SU(2) x U(1). 

Fractional charge assignment such as q = + l/3, ? 2/3, and + 4/3 are 

also possible for Type I but in this case representation (1) can accommodate 

only two generations of quarks and leptons. SU(7) model with q = f. l/3 has 

been discussed recently by some authors.5 For this reason, we give the com- 

plete U(1) analysis as well as the charge operators in Table IV. We stress 

that such fractional charge assignments are not possible for Type II (Eqs. 

(2) and (3)). This type of model with fractional q may provide another ex- 

citing usefulness of SU(7) if the recent report4 of the particle with the 

charge + l/3 implies, indeed, the existence of the fractionally-charged color 
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singlets. The structure of the charge operator considered by Li and Wilczek5 

corresponds to Case (A) for Type I while they suggest the symmetry-breaking 

mode Case (D) for generating fermion masses. This type of model necessarily 

contains, amongst others, integrally-charged (3*,2), and fractionally-charged 

(1,2) multiplets of (SUc(3), SU(2)). Then such integrally-charged quarks can 

form bound states with the usual color-triplet quarks, which will then material- 

ice as fractionally-charged hadrons. 23 

Having determined U(1) eigenvalues, we proceed to find the usual weak 

hypercharge Y that is given by a linear combination of Ya, Yb, and Yc with 

coeffients a, b, and c respectively. With the convention 

Tr T32 = Tr Y12 = l/2 , 

we obtain from Eqs. (16) and (18)that 

Q = T3 + Y = T3 + C Y 
1 = T3 + (5/3 + 4q ) 2 l/2 y 

1 (21) 

This gives the SU(2) x U(1) mixing angle at the grand unification mass MC by 

sin2eW (MC) = Tr T32/TrQ2 = (1 + C 3-l = 3/(8 + 12q2) (22) 

which implies 

sin2eW (MG) = 0.15, 0.375, and 0.32 

for q = ? 1, 0, and F l/3 respectively. Obviously one needs to increase 

(decrease) sin2’aW in the case q = il (q = 0, and + l/3), when it is extrapolated 

to the low-energy region via therenormalization equation. This may choose to 

prefer particular modes of symmetry-breaking in each case. Such renormalization 

corrections can indeed be made as has been done by Kim. 1 They usually contain 
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two or three parameters coming from intermediate mass scales and we leave 

this problem as an exercise to the interested readers. 

v. FERMION CONTENTS 

Representations (1) and (2) agree for the first two generations of 

leptons and quarks. However, as for t quark, they predict completely dif- 

ferent physics. Whereas there is no light t quark in Eq. (2), there are 

two more doublets of quarks, in Type I with q = il. But b and t have dif- 

ferent doublet partners : b is forming a doublet with an exotic partner x 

with charge -4/3 while t has another exotic partner y whose charge is 5/3. 

The semi-leptonic b decay in Type I is discussed in Ref. 1. As for the 

leptons, there is an additional doublet of charge +2 and +l besides the 

usual tau doublet in Type I. In fact, Type II does not contain any exotic 

particles, while exotic quarks and leptons are naturally occurring in Type I: 

(xCJhL > (tC,YCIL I (L++,L+)L (23) 

where the two quark doublets correspond to two (3*;2), $I& and $I;,,., with 

Y = 5/6 and Y = -7/6 respectively, and the lepton doublet to (1,2), G70. 

Here a and i denote 4, 5, and 1, 2, 3 respectively. Also xL = $6i with 

Y = -4/3, yL =gj with Y = 5/3, and Li- = JI* 457 with Y = -2. Thus the repre- 

sentation (1) contains four doublets of quarks and leptons. 

We note that there are two b-type quarks in Eq. (2) which are real with 

respect to the SUc(3) x SU(2) x U(1). Also there is a fourth lepton doublet 

with the ordinary charge, but both third and fourth lepton doublets are real 
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with respect to SUc(3) x SU(2) x U(1). Representation (2) of Type II may 

not give any substantial hadronic or semi-leptonic b decay. 24 Since the 

two b-type quarks and two r-like lepton doublets are real with respect to 

SUc(3) x SU(2) x U(l), the mass of these particles are expected to be 

heavier than those of the first two generations according to the usual sur- 

viva1 hypothesis, 
7 

In any case, the T neutrinos must be massive. 

As mentioned before, the representation of Type I can allow the 

fractional charges such as *l/3, ?2/3, ?4/3 in the fundamental representa- 

tion [7], if we require at least two generations of quark and lepton to 

exist with the usual quantum numbers as given in the standard electroweak 

theory. 

Exotic quarks and leptons are characteristic of this type of SU(7) 

models. For example, Eq. (1) with q = *l/3 contains two additional doublets 

of “lepton” with the fractional charge, 

(L+2/3, L-1/3)L ) (L’“/3, L1/3)L (24) 

having Y = l/6 and S/6 respectively, and two additional doublets of “anti- 

quark”, i.e., two (3* ,2)‘s with unconventional charges, 

($13, Q-l/3)L , (GO; PIL (25) 

with Y = l/6 and Y = -l/2 respectively as well as their right-handed singlet 

partners in addition to the two neutral lepton singlets. Since the repre- 

sentation is complex with respect to SUc(3) x SU(2) x U(l), most of these 

exotic particles would not be so heavy. It is interesting to note that, in 

addition to the fractionally-charged leptons of Eq. (24), fractionally-charged 
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hadrons are predicted in this model from the color singlet bound state of 

'Eq. (25) and the usual quark. 

The most general Yukawa interaction for Type I is also discussed 

by Kim'. We will suffice to state that fermion masses can be generated by 

giving non-zero vacuum expectation values to the appropriate SUc(3) x Uem(l) 

neutral components of Higgs scalars, i.e., to (O,O,O,O,-1,l) of [7] . H' 

(0,0,-1,~,0,1) of [351H; (O,O,l,O,-2,l) and (0,0,0,0,1,-l) of [1401H; 

(-1,1,0,1,0,-11~ (o,o,o,fJ,l>-l), (0,0,1,0,-2,1), (1,-1,0,-1,2,-l), 

C-1,1,-2,1,-1,21 and Cl,-l,l,-l,-l,l) of [SSSI, in case (D) of symmetry- 

breaking. 

VI. CONCLUDING REMARKS 

We have given thorough analysis of U(1) eigenvalues and their contribu- 

tions to the charge and hypercharge generators in SU(7) grand unification models. 

There are nine distinct and physically interesting modes of symmetry-breaking 

for 

SU(7) + SUc(3) x SU(2) x U(1) , 

In general, the final hypercharge operator U(1) is given by a linear combination 

of the three U(1) generators emerging at the various stages of each symmetry- 

breaking. Such U(1) analysis is carried out by making use of the projection 

operators of branching modes of SU(n) group. The projection operator method is 

most.convenient to use and to find the U(1) eigenvalues and can easily be 

applied to any Lie group. 
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By imposing a set of five guidelines, we narrowed down the allowed 

SU(7) representations to be exactly one in the case where the same irreducible 

representation is not permitted to repeat itself. This case is referred to as 

Type I in the text. 

In Type II where the same irreducible representation is allowed to 

repeat as long as there are no common factors in the coefficients, we found 

two more representations with D < 110 under somewhat relaxed requirements. 

The representation (2) contains two generations of quarks and leptons whose 

representations are complex with respect to SUc(3) x SU(2) x U(1). Repre- 

sentation (3) allows only one family of the quark-lepton to have complex 

representation with respect to SUc(3) x SU(2) x U(1). 

Both representations (1) and (2) have been the subjects of recent dis- 

1,5 
cussions, but usually with a particular mode of symmetry-breaking pattern. 

In Type II, one or more generations may have heavier mass than the 

first generation. 

The two types of representations have rather different fermionic con- 

tents. Whereas there are no exotic particles with unusual charges in Type II, 

exotic particles are natural commodities of Type I. This is because repre- 

sentations of Type II permit only trivial embedding of SU(5) in the funda- 

mental representation of SU(7), i.e., the two additional SU(5) singlets are 

electrically neutral under due conditions. On the other hand, in Type I, the 

SU(5) singlets in [7] have non-trivial charges. Not only can they allow 

q = +1 but also fractional charges like q = ?1/3, +2/3 or i4/3. 
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The most crucial constraints that force only trivial embedding of SU(5) 

i* Type II representations, i.e., q = 0, are the reality conditions under 

SUc(3). We think this may be of the general characteristics of the 

Type II representations in any SU(n) grand unification models where 

n > 7. Therefore, non-trivial SU(5) embedding appears to be possible only 

for Type I representations. 

The representation (1) contains four doublets of quarks and leptons, 

some of which are made of particles with unconventional charges. For q = 21, 

they are given in Eq. (23) in addition to the usual three lepton doublets and 

two quark doublets. For q = *l/3, they are the four doublets of Eqs. (24) and 

(25) besides the usual two families of (u, d, ve, e) and (c, s, v , n). The 
u 

representation (2) contains two topless b-quarks, i.e., without their t-type 

partners, and two additional r-type lepton doublets along with the usual two 

families of particles. These additional particles have representations which 

are real with respect to SUc(3) x SU(2) x U(l), so that their masses are ex- 

pected to be heavier than those of the usual families. 

The representation (3) has the same fermionic content as in Eq. (2) ex- 

cept for the fact that all particles besides the first family (u, d, ve, e) 

have real representations in SUc(3) x SU(2) x U(1). 

Further experimental confirmation of significant semileptonic and 

hadronic b decay may not favor the representations of Type II. On the other 

hand, if fractionally-charged leptons as well as hadrons are found, the repre- 

sentations of Type I with the fractional charge such as q = *l/3 either in 

SU(7) or SU(9) may be of some interest. 
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We have constructed projection operators for all of the symmetry- 

breaking modes of interest in Table I. With these, we carried out projec- 

tions of SU(7) into SUc(3) x SU(2) 
b 

x Us(l) x U (1) x U'(1) for the two types 

of representations. We have explicitly given the projections of representa- 

tion (1) for Case (D) in Table II to indicate how the projection operator 

method results in various eigenvalues. As mentioned before, the U(1) com- 

binations obtained by others are only particular cases of many possible 

solutions. We then showed how these U(1) eigenvalues are combined to give 

the right hypercharge operator for representations considered in Table III 

and Table IV. Different symmetry-breaking patterns generally have different 

U(1) combinations for hypercharge. For given charge assignment of [7], the 

weak mixing angle at the grand unification mass is given by the same value 

Eq. (la), but different symmetry-breaking patterns will give rise to differ- 

ent evolutions of the running coupling constants and in particular sin2eW. 

Such estimates can be made and have been done at least for two cases of 

symmetry-breaking. But they will usually involve two or three parameters 

corresponding to the threshold values of the intermediate stages of symmetry 

breaking. 
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TABLE I. Projection operators for nine symmetry-breaking patterns of SU(7) 

into SlJc(3) x SU(2) x Us(l) x Ub(l) x UC(l). 

Case (A) Case (B) 

1 1 0 0 0 

0 0 1 1 1 

1 1 1 1 0 

4 -1 1 -4 -2 

0 1 1 0 0 

1 1 -1 -1 2 

Case (C) 

0 0 0 0 0 

1 1 1 1 1 

0 1 1 0 0 

4 -1 1 -4 -2 

2 2 -2 -2 -1 

2 2 2 2 -1 

Case (E) Case (F) 

1 

0 

1 

-1 

1 

1 

1 

0 

1 

2 

2 

-1 

0 

1 

1 

-2 

2 

-1 

0 

1 

1 

1 

-1 

-1 

1 

0 

1 

-1 

1 

1 

Case (D) 

0 0 0 

1 1 1 

1 1 1 

2 -2 1 

1 -1 -1 

2 2 -1 
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Table I - cont’d 

Case (G) 

0 0 0 0 

1 1 1 1 

1 1 1 0 

3 -3 -2 -1 

3 3 -2 -1 

-1 -1 -1 2 

Case (I) 

/ 0 0 0 1 1 1 0 2 1 1 0 1 1 1 3 -3 0 1 1 1 -2 0 1 1 1 -1 0 0 0 1 

1. 

1 

0 

0 

1 

1 

1 

Case (H) 

0 0 0 0 

1 1 1 1 

1 1 0 0 

3 -3 -2 -1 

0 0 -2 -1 

2 2 2 -1 1 
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TABLE II. Complete weight system of [7]; [21], and [35] with 

SUc(3) x SU(2) x us(l) x U 
b (1) x UC(l) properties. Here 

.(SUc(3), SU(Z)), denotes the mth and nth element of 

SUc(31 and SU(2) representations and A: [7] = Ji,; 6: [21] = +aB; 

C" [351 = vJaBy' where a,B,y = 1, 2, 3,.*.,7. 

A: 171 = +a 

Weight A2 Al Ya Yb Yc Y (SUc(3),SU(2)) CL 

10 0 0 0 0 10 

-110 0 0 0 0 0 

0 -1 1 0 0 0 -1 1 

0 0 -1 1 0 0 0 0 

0 0 0 -1 1 0 0 0 

0 0 0 0 -1 1 0 0 

0 0 0 0 0 -1 0 -1 

0 

1 

0 

0 

0 

-1 

0 

3 

-4 

3 

-4 

3 

-4 

3 

0 

1 

0 

-2 

0 

1 

0 

1 -l/3 1 (3,1) 1 

0 l/2 (1,24 - 4~ 

1 -l/3 2 (3,1) 2 

0 -.l (1,1) 6 

-3 +1 Cl,11 7 

0 l/2 u,a2 5 

1 -l/3 3(3,1) 3 
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Table II. cont'd. 

B: [21] = $a8 

Weight A2 Al Ya Yb YC Y Wc(3),5u(2)) aB 

0 1 0 0 0 0 1 0 1 -1 1 1 l/6 

1 -1 1 0 0 0 0 1 0 6 0 2 -2/3 

-1 0 1 0 0 0 -1 1 1 -1 1 1 l/6 

1 0 -1 1 0 0 1 0 0 -1 -2 1 -4/3 

-1 1 -1 1 0 0 0 0 1 -8 -1 0 -l/2 

1 0 0 -1 1 0 1 0 0 6 0 -2 2/3 

0 -1 0 1 0 0 -1 1 0 -1 -2 1 -4/3 

-1 1 0 -1 1 0 0 0 1 -1 1 -3 312 

1 0 0 0 -1 1 1 0 -1 -1 1 1 l/6 

0 -1 1 -1 1 0 -1 1 0 6 0 -2 2/3 

-1 1 0 0 -1 1 0 0 0 -8 2 0 1 

1 0 0 0 0 -1 1 -1 0 6 0 2 -2/3 

0 0 -1 0 1 0 0 0 0 -1 -2 -3 0 

0 -1 1 0 -1 1 -1 1 -1 -1 1 1 l/6 

-1 1 0 0 0 -1 0 -1 1 -1 1 1 U-5 

0 0 -1 1 -1 1 0 0 -1 -8 -1 1 -l/2 

0 -1 1 0 0 -1 -1 0 0 6 0 2 -2/3 

0 0 0 -1 0 1 0 0 -1 -1 1 -3 312 

0 0 -1 1 0 -1 0 -1 0 -1 -2 1 -4/3 

0 0 0 -1 1 -1 0 -1 0 6 0 -2 213 

0 0 0 0 -1 0 0 -1 -1 -1 1 1 l/6 

41 

21 

42 

61 

64 

71 

62 

74 

51 

72 

45 

13 

76 

25 

34 

56 

23 

57 

36 

37 

35 
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c: [351 = tJaBy 

Weight A2 Al Ya Yb YC Y (SUc(3) ,SU(2)) &Y 

0 0 1 0 0 0 

0 1 -1 1 0 0 

1 -1 0 1 0 0 

0 1 0 -1 1 0 

-1 0 0 1 0 0 

1 -1 1 -1 1 0 

0 1 0 0 -1 1 

-1 0 1 -1 1 0 

1 0 -1 0 1 0 

1 -1 1 0 -1 1 

0 1 0 0 0 -1 

-1 1 -1 0 1 0 

-1 0 1 0 -1 1 

1 0 -1 1 -1 1 

1 -1 1 0 0 -1 

0 -1 0 0 1 0 

-1 1 -1 1 -1 1 

-1 0 1 0 0 -1 

1 0 0 -1 0 1 

1 0 -1 1 0 -1 

0 -1 0 1 -1 1 

0112 12 -l/6 

1 0 1 -5 -1 1 -5/6 

0 1 0 2 -2 2 -s/3 

1 0 1 2 1 -2 7/6 

-1 1 1 -5 -1 1 -S/6 

0 1 0 9 0 -1 l/3 

10 0 -5 2 1 213 

-1 1 1 2 1 -2 7/6 

1 0 0 2 -2 -2 -l/3 

0 1 -1 2 1 2 -l/6 

1 -1 1 2 1 2 -l/6 

0 0 1 -5 -1 -3 l/2 

-1 1 0 -5 2 1 2/3 

1 0 -1 -5 -1 1 -S/6 

00 0 9 0 3 -1 

-1 1 0 2 -2 -2 -l/3 

0 0 0 -12 0 0 0 

-1 0 1 2 1 2 -l/6 

1 0 -1 2 1 -2 7/6 

l-l 0 2 -2 2 -s/3 

-1 1 -1 -5 -1 1 -S/6 

421 

641 

621 

741 

642 

721 

541 

742 

761 

521 

431 

764 

542 

651 

321 

762 

654 

432 

751 

631 

652 
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Table II. cdnt'd (C: [35] = emBy 

Weight A2 Al Ya Yb Yc y wJc(3) ,SU(21) my 

-1 1 0 -1 0 1 

-1 1 -1 1 0 -1 

1 0 0 -1 1 -1 

0 -1 1 -1 0 1 

0 -1 0 1 0 -1 

-1 1 0 -1 1 -1 

1 0 0 0 -1 0 

0 0 -1 0 0 1 

0 -1 1 -1 1 -1 

-1 1 0 0 -1 0 

0 0 -1 0 1 -1 

0 -1 1 0 -1 0 

0 0 -1 1 -1 0 

0 0 0 -1 0 0 

0 0 

0 -1 

1 -1 

-1 1 

-1 0 

0 -1 

1 -1 

0 0 

-1 0 

0 -1 

0 -1 

-1 0 

0 -1 

0 -1 

0 

1 

0 

-1 

0 

1 

-1 

-1 

0 

0 

0 

-1 

-1 

-1 

-5 2 

-5 -1 

9 0 

2 1 

2 -2 

2 1 

2 -1 

-5 -1 

9 0 

-5 2 

2 -2 

2 1 

-5 -1 

2 1 

-3 2 

1 -S/6 

-1 l/3 

-2 7/6 

2 -s/3 

-2 7/6 

2 -l/6 

-3 l/2 

-1 l/3 

1 2/3 

-2 -l/3 

2 -l/6 

1 -S/6 

-2 7/6 

754 

643 

731 

752 

632 

743 

531 

765 

732 

543 

763 

532 

653 

753 



-29- 

TABLE III. U(1) contributions to the charge operator Q in nine possible cases of 

symmetry-breaking patterns. For the representations of Type I 

and Type II, a, b, and c are determined by 

Q = T3 + aYa + bYb + cYc. 

Type I Type II 

a b C a b C 

Case A 

Case B 

Case C 

Case D 

Case E 

Case F 

Case G 

Case H 

Case I 

0 

-l/10 

-l/10 

-l/10 

-l/6 

0 

l/12 

l/12 

l/12 

iU6 

-l/6 

l/6 

-l/6 

l/6 

;1 l/6 

;1 l/15 

-3/10 l/6 

l/S -l/3 

-l/6 l/6 

l/2 -l/3 

-l/4 l/2 

S/12 -l/6 

l/4 +1 

?1/6 l/6 

-I/3 -l/6 

-l/6 -l/3 

l/6 -1~/2 

l/2 -l/6 

0 

-l/10 

-l/10 

-l/12 

-l/12 

l/12 

l/12 

0 

0 

0 

0 l/f3 

0 l/15 

-l/20 -l/12 . 

l/6 -l/12 

l/6 -l/12 

l/12 l/6 

+1/4 

0 

-l/4 

l/3 

0 

l/6 

-l/12 

l/6 
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TABLE IV. U(1) contributions to the charge operator Q in nine possible cases 

of symmetry-breaking patterns for [21] + [35*] + [7*] with fractionally 

charged color singlet. Charge operator Q is given by 

Q = T, + aYa + bYb + CY '. 

2 

q = d/3 

+ 35* + 7* 

q = C2/3 q = ?4/3 

Case A 

Case B 

Case C 

Case D 

Case E 

Case F 

Case G 

Case H 

Case I 

a b 

0 ilj3 

-l/10 Cl/3 

-l/lO~ -2j15 
-l/10 l/30 

-l/9 l/18 
-l/18 S/18 

l/12 -l/36 
l/12 7/36 

l/12 l/4 

~1/18 klj18 

-l/18 -s/i8 
l/18 -2j9 

-l/18 S/18 
l/18 7/18 

C 

l/6 

l/15 

0 
-l/6 

0 
-l/6 

S/18 
l/18 

t1/3 

l/6 

0 
-l/6 

S/18 
l/18 

a 

0 

-l/10 

-l/10 
-l/10 

-S/36 
-l/36 

l/12 
l/12 

l/12 

Fug 

-l/9 
1/g 

-l/9 
1/g 

b C 

t2/3 l/6 

+2/3 l/15 

13/60 l/12 
7/60 -l/4 

-l/18 
7/18 

l/12 
-l/4 

-S/36 
llj36 

7/18 
-l/18 

l/4 i2/3 

lrug l/6 

-11/36 
-7j36 

l/12 
-l/4 

2/g 
4/g 

7/18 
-l/18 

a b 

0 ?4/3 

-l/10 _+4/3 

-l/10 -23/60 
-l/10 17160 

-7j36 -S/18 
l/36 11/18 

l/12 -13/36 
l/12 19/36 

l/12 l/4 

;2/9 *2/9 

-2j9 -13/36 

2/g -S/36 

-2j9 1/g 
2/g 5/g 

C 

l/6 

l/15 

l/4 
=5/l? 

l/4 
-s/12 

llj18 
-S/18 

+4/3 

l/6 

l/4 
-S/12 

llj18 
-S/18 
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